Search results for "Burning velocity"

showing 2 items of 2 documents

Probing the low-temperature chemistry of ethanol via the addition of dimethyl ether

2018

Considering the importance of ethanol (EtOH) as an engine fuel and a key component of surrogate fuels, the further understanding of its auto-ignition and oxidation characteristics at engine-relevant conditions (high pressures and low temperatures) is still necessary. However, it remains difficult to measure ignition delay times for ethanol at temperatures below 850 K with currently available facilities including shock tube and rapid compression machine due to its low reactivity. Considering the success of our recent study of toluene oxidation under similar conditions [38], dimethyl ether (DME) has been selected as a radical initiator to explore the low-temperature reactivity of ethanol. In …

IGNITION DELAY020209 energyGeneral Chemical EngineeringRAPID COMPRESSION MACHINEGeneral Physics and AstronomyEnergy Engineering and Power TechnologyLibrary science02 engineering and technologyPRESSURE FLOW REACTORGAS-PHASE7. Clean energychemistry.chemical_compound[SPI]Engineering Sciences [physics]RATE CONSTANTSLow-temperature chemistry020401 chemical engineering0202 electrical engineering electronic engineering information engineeringDMELAMINAR BURNING VELOCITYOrganic chemistryDimethyl ether[INFO]Computer Science [cs]0204 chemical engineeringSHOCK-TUBECHEMICAL-KINETICSComputingMilieux_MISCELLANEOUSEthanolGeneral ChemistryTHERMAL-DECOMPOSITIONIgnition delay timesFuel TechnologychemistryLIQUID FUELS13. Climate action
researchProduct

Methyl-3-Hexenoate Combustion Chemistry: Experimental Study and Numerical Kinetic Simulation

2020

International audience; This work represents a detailed investigation of combustion and oxidation of methyl-3-hexenoate (CAS Number 2396-78-3), including experimental studies of combustion and oxidation characteristics, quantum chemistry calculations and kinetic model refinement. Following experiments have been carried out: Speciation measurements during oxidation in a jet-stirred reactor at 1 atm; chemical speciation measurements in a stoichiometric premixed flame at 1 atm using molecular-beam mass-spectrometry; ignition delay times measurements in a shock tube at 20 and 40 bar; and laminar burning velocity measurements at 1 atm using a heat-flux burner over a range of equivalence ratios. …

Materials scienceGeneral Chemical EngineeringFlame structureGeneral Physics and AstronomyEnergy Engineering and Power TechnologyThermodynamics02 engineering and technologyKinetic energyCombustion01 natural sciences7. Clean energylaw.invention020401 chemical engineeringlawOxidation mechanisms0103 physical sciencesOxidationJet stirred reactor0204 chemical engineeringShock tubePremixed flame010304 chemical physics[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentBurning velocityLaminar flowGeneral Chemistrykinetic modelingIgnitionbiofuelsIgnition system[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryFuel TechnologyFlame structureCombustorMethyl-3-hexenoate
researchProduct